Wir stellen Desktop ein
Treffen Sie Conduktor Scale

Unser Desktop-Produkt erreicht 2025 das Ende seiner Reise. Aber Ihre hat gerade erst begonnen. Begrüßen Sie Conduktor Scale – entwickelt, um mit Ihnen zu wachsen, egal wo Sie sich auf Ihrer Datenstreaming-Reise befinden.

What is Streaming EDM?

Kafka ist entscheidend für die Mission, aber die Abhängigkeit von zentralen Teams für Genehmigungen und Bereitstellungen verursacht kostspielige Verzögerungen. Traditionelle, zentralisierte Verwaltung führt zu:

How Streaming Transforms Data Management

Organizations today depend on real-time data for decision-making, customer interactions, fueling AI initiatives, and maintaining a competitive edge. Without proper data management, they face:

Organizations today depend on real-time data for decision-making, customer interactions, fueling AI initiatives, and maintaining a competitive edge. Without proper data management, they face:

Organizations today depend on real-time data for decision-making, customer interactions, fueling AI initiatives, and maintaining a competitive edge. Without proper data management, they face:

Organizations today depend on real-time data for decision-making, customer interactions, fueling AI initiatives, and maintaining a competitive edge. Without proper data management, they face:

Entwicklerautonomie aktivieren

Teams stellen Kafka-Ressourcen unabhängig bereit und verwalten sie.

Skalieren Sie selbstbewusst

Proaktive Überwachung und Durchsetzung bewährter Praktiken

Security gaps

Uncontrolled data access exposes organizations to breaches.

Operational failures

Broken pipelines lead to system downtime and lost revenue.

A streaming EDM ensures every data event is governed, structured,
and secured instantly, preventing problems before they escalate.

A streaming EDM ensures every data event is governed, structured, and secured instantly, preventing problems before they escalate.

A streaming EDM ensures every data event is governed, structured, and secured instantly, preventing problems before they escalate.

End the Chaos.
Manage Your Data Proactively

A Streaming EDM platform shifts data management from reactive firefighting to proactive, automated control, providing.

01

Operational Stability & Risk Reduction

Minimize downtime by catching and fixing issues before they escalate.

Resolve data failures in minutes with faster root cause analysis.

Prevent cascading failures by blocking bad data at the source.

02

Cost & Resource Optimization

Cut storage and processing costs by eliminating bad data early.

Automate quality checks, reducing manual engineering effort.

Prevent fines and wasted resources with proactive governance.

03

Faster Issue Detection & Resolution

Detect issues in real time before they impact critical systems.

Automate fixes to reduce troubleshooting time.

Improve incident response speed with instant alerts and insights.

04

Long-Term Business & System Improvements

Optimize system scalability with real-time monitoring.

Enforce continuous compliance to reduce regulatory risks.

Accelerate decision-making with clean, real-time data.

comparison

Why Data Management Must Move to Streaming

Organizations can no longer afford to make decisions on stale, unreliable data. In a batch-based world, data consumers—analysts, AI models, business teams—work with outdated information, leading to missed opportunities and increased risk.

Organizations can no longer afford to make decisions on stale, unreliable data. In a batch-based world, data consumers—analysts, AI models, business teams—work with outdated information, leading to missed opportunities and increased risk.

Streaming EDM ensures that all data is validated, secure, and immediately usable, eliminating delays and reprocessing headaches. With real-time access to trusted data, organizations can act instantly, reduce operational risk, and make confident, data-driven decisions.

Capability

Traditional EDM

Traditional EDM

Streaming EDM

Conduktor’s Encryption

Data Processing

Batch mode (hours/days later)

Batch mode (hours/days later)

Real-time enforcement

Real-time enforcement

Governance

After ingestion

After ingestion

At the source

At the source

Security & Compliance

Limited visibility

Limited visibility

Continuous monitoring & enforcement

Continuous monitoring & enforcement

Data Quality

Reactive fixes

Reactive fixes

Proactive validation

Proactive validation

Business Impact

Delayed insights, costly errors

Immediate, reliable data-driven decisions

Müheloser Kafka-Selbstservice in 4 Schritten

The Core Components of an Streaming EDM

A Streaming EDM platform is built on several critical components that ensure governance, security, and data quality in real-time:

Müheloser Kafka-Selbstservice in 4 Schritten

Entwicklerautonomie aktivieren

Teams stellen Kafka-Ressourcen unabhängig bereit und verwalten sie.

Skalieren Sie selbstbewusst

Proaktive Überwachung und Durchsetzung bewährter Praktiken

Sicherheit und Governance durchsetzen

Automatisierte Richtlinien gewährleisten die Einhaltung in jeder Phase.

Müheloser Kafka-Selbstservice in 4 Schritten

Definiere Leitplanken

Das zentrale Plattformteam legt Sicherheits-, Governance- und Ressourcenrichtlinien fest.

Anwendungseigentümer zuweisen

Das Plattformteam erklärt die Anwendungen und deren Rechte und bestimmt die Zuständigkeit.

Überwachen und Optimieren

Nutzung verfolgen und Arbeitsabläufe dynamisch anpassen.

Why Organizations Choose Conduktor?

Conduktor is the only EDM platform designed for real-time streaming data. We provide:

Verwalten Sie isolierte Umgebungen für externe Interessengruppen mit unseren Partnerzonen, die den Zugang zu ausgewählten Kafka-Themen gewähren.

Real-time enforcement
No waiting, no blind spots, no bad data.

Seamless integration
Works with any Kafka deployment, no additional complexity.

Verwalten Sie isolierte Umgebungen für externe Interessengruppen mit unseren Partnerzonen, die den Zugang zu ausgewählten Kafka-Themen gewähren.

Real-time enforcement
No waiting, no blind spots, no bad data.

Seamless integration
Works with any Kafka deployment, no additional complexity.